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This paper concerns the study of the strong stochasticity threshold (SST) in Hamiltonian systems
with many degrees of freedom, and more specifically the stability problem of this threshold in the
thermodynamic limit (N — o0).
geometrical description of Hamiltonian chaos. The mathematical framework is given by Eisenhart’s
formulation of Newtonian mechanics in a suitably enlarged configuration space-time: a Riemannian
manifold equipped with an affine metric. Using the Jacobi-Levi-Civita equation for geodesic spread,
we estabilish a relation between curvature properties of the ambient manifold and the stability—
or instability—of the dynamics. The use of the Eisenhart metric makes it clearly evident that a
dominating source of chaoticity in Hamiltonian flows of physical interest is represented by parametric
resonance induced by curvature fluctuations along the geodesics and not by negativeness of some
curvature property. Here only Ricci curvature is involved because the scalar curvature vanishes
identically with this metric. Thus a geometric quantity relevant to the study of chaos is the degree
of bumpiness of the ambient manifold, i.e., the integral of the Ricci curvature carried over the whole
manifold with the constraint of energy constancy. This quantity, considered as a function of the
energy density ¢, clearly marks the SST. A simple sufficient criterion is given to identify integrable
systems and is here applied to a chain of linear oscillators as well as to the Toda lattice. In the case
of the Fermi-Pasta-Ulam 8 model we have worked out analytically the e dependence of the degree of
bumpiness of the ambient manifold. This allowed us to prove that the SST is stable in the N — oo
limit. An operational definition of the critical energy density is also provided and shown to yield
predictions in excellent agreement with previous results based on Lyapunov exponents.

The investigation is based on a recently proposed differential
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I. INTRODUCTION

It has been shown recently [1,2] that a strong stochas-
ticity threshold (SST) exists in nonlinear Hamiltonian
systems with V > 3 degrees of freedom. Generic nonin-
tegrable Hamiltonian systems, with at least three degrees
of freedom, always have a connected chaotic component
in phase space. As already discussed elsewhere [1-3], the
measure of such a chaotic fraction of phase space coin-
cides with the measure of the whole accessible energy
surface when the nonintegrable perturbation amplitude
exceeds some critical value given by the Kol’'mogorov-
Arnol’d-Moser (KAM) theorem. But this critical value
drops to zero faster than exponentially with the number
of degrees of freedom. Already with a few tenths of de-
grees of freedom the KAM threshold is too small to have
any physical relevance.

The SST is defined through a critical energy density
€. (¢ = E/N is the energy per degree of freedom) such
that for € > ¢, the dynamics is strongly chaotic, whereas
for € < e, the dynamics is only weakly chaotic.

Strong chaoticity is quantitatively described by a scal-
ing law of the largest Lyapunov exponent A;(e), ex-
plained by a random-matrix approximation of the tan-
gent dynamics, and since at € > £, the tangent dynam-
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ics of the flow is reasonably approximated by a random-
matrix process without memory, the dynamics itself must
possess good properties of randomness (of course if it is
observed with a suitable temporal coarse graining). In
this case diffusion is fast in every direction of phase space
and mixing is fast for the largest majority of initial con-
ditions.

On the contrary, at € < &, phase-space diffusion is
much slower and chaoticity is definitely weaker and char-
acterized by a steeper scaling law A;(g). In this regime,
depending on the initial conditions, very long mixing
times can be observed. Phase-space paths are now more
tortuous and can even look regular when followed during
an insufficiently long observational time.

The discovery of this threshold (SST) has eventually
clarified the reason why some kind of bimodality has
always been found in the dynamical behavior of non-
linear, nonintegrable Hamiltonian systems. Such a bi-
modality, found in numerical simulations by varying the
energy, has been attributed, from time to time, to the
existence of a stochasticity threshold [4,5], the existence
of an equipartition threshold [6], or tentatively explained
through theoretical results such as the Nekhoroshev the-
orem [7]. However, the bimodality can be properly ex-
plained by a transition between regimes of a qualitatively
different chaoticity, thus by the existence of the SST. In
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fact, chaos is always present in nonlinear nonintegrable
Hamiltonian systems, therefore we cannot properly speak
of a stochasticity threshold.

Equipartition of energy is always attained [1,2] in the
energy domains where insufficient observational times
seem to suggest the contrary, so that an equipartition
threshold cannot be properly defined (unless some bound
is preassigned to observation time).

Finally, methods and results borrowed from classical
perturbation theory are not adequate to account for the
existence of the SST inasmuch as it concerns chaotic
rather than regular motion and it occurs at a degree of
nonlinearity far above the quasi-integrability condition.

A major question about this threshold has been left
open: what is its fate when the number IV of degrees of
freedom becomes larger and larger? This is commonly
referred to as the thermodynamic-limit problem. The
present paper aims at giving a substantial contribution
about this point.

Since a pioneering paper on a chain of particles coupled
by a Lennard-Jones potential [8], some indications were
found about a possible stability with N of the critical
energy, at that time referred to as stochasticity thresh-
old. Later on, results about an apparent existence of an
equipartition threshold [6] seemed to confirm the above
suggested stability whereas in a subsequent work [9] it
has been claimed just the opposite.

There are at least three main points deserving particu-
lar care: (i) the definition of the threshold, (ii) the choice
of initial conditions, and (iii) the choice of a sensible way
of detecting the threshold.

A good definition of the SST could be given through
the € behavior of any observable that is sensitive to the
difference between weak and strong chaos. A nice exam-
ple is provided by quantities related to correlation func-
tions [10]. However, the crossover of the scaling of A;(¢)
has some major advantages: it is unambiguous, directly
related to the level of chaoticity, and is independent of
the choice of initial conditions. Because of this last prop-
erty, the crossover of A{(¢) gives an intrinsic definition
of a global transitional feature of the dynamics; for this
reason it is markedly superior to any other observable.

A priori one could hope to get hints about the ther-
modynamic limit of the SST by working out &.(/N) from
A1(e, N). Unfortunately the convergence time of A;(t)
quickly grows with N, becoming prohibitively long, at
low energy, already at a few hundreds of degrees of free-
dom.

In order to circumvent this difficulty, we use, in the
present paper, an alternative method to study both ana-
lytically and numerically the SST. This method is based
on a differential geometrical description of Hamiltonian
chaos [3].

The geometrical approach is made possible by Mau-
pertuis’s least-action principle for isoenergetic paths of
standard (i.e., Newtonian) Hamiltonian systems. Ki-
netic energy provides a positive-definite quadratic form
airG'¢® allowing the definition of a Riemannian met-
ric in configuration space M. The arc length, when
a potential function is present, is ds> = 2W?32dt? =
{[E — V(Q)]aird*d*}dt® = girdg*dq®.
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The geodesic equations on a Riemannian manifold are
given by

d2q* . dg” dg*
g2 T gs as =00 1)

where s is the proper time and I'j, are the Christoffel
coefficients of the Levi-Civita connection associated with
guv- By computing Eq. (1) with the kinetic-energy (Ja-
cobi) metric, we recover Newton’s equations of motion.
There is a relationship between the stability of the
geodesics of a Riemannian manifold and the curvature
properties of the same manifold. Such a relationship is
based on a mathematical tool related with the second-
order variations of the arc-length (action) functional.
Equation (1) represents the differential version of the
condition to make vanishing first-order variations of this
functional. We can intuitively understand that a geodesic
that makes stationary the arc-length (action) functional
without minimizing it will be unstable with respect to
variations of the initial conditions. ’
Second-order variations lead to Jacobi-Levi-Civita
(JLC) equation of geodesic spread. This equation reads

VViu, pu 94° .99 _

dsdsf +R"""ds£ ds =0, 2)
where £ is the vector field of geodesic separation and
can be used to measure the distance between nearby
geodesics; (V&/ds) is the covariant derivative along a
geodesic and RY, is the Riemann curvature tensor.

Now we can ask what the relationship between the
instability of the geodesics and chaos is.

It is well known that a key for the understanding of de-
terministic chaos is provided by Smale’s diffeomorphism:
an abstract and paradigmatic way of realizing the two
basic (topological) ingredients for the appearance of a
hyperbolic limit set, i.e., stretching and folding of a given
set of initial conditions [11].

The traditional explanation of the origin of chaos in
Hamiltonian systems is provided by the existence of ho-
moclinic intersections [12]. Especially at high dimension
and for strong nonlinearity, homoclinic intersections are
of little practical (computational) use; however, they are
responsible for the appearance of a hyperbolic invariant
set (Smale-Birkhoff theorem) deeply affecting the dynam-
ics. Therefore Hamiltonian chaos also stems from the
two mentioned basic ingredients—stretching and folding
of volumes in phase space.

In the Riemannian description of Hamiltonian chaos,
stretching is provided by the instability of nearby trajec-
tories and folding by not allowing the distance between
them to grow indefinitely, that is, by compactness of
the ambient manifold. With these conditions, the phase
trajectories are compelled to fold themselves in a very
complicated fashion, which makes “forget” their initial
conditions and makes their evolution practically unpre-
dictable. This is an alternative way of looking at the
origin of Hamiltonian chaos with respect to the standard
approach of homoclinic intersections. For the majority
of systems of physical interest, the configuration-space
manifold (M, g7) is compact, i.e., the coordinates remain
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bounded during their time evolution.

For what concerns instability (stretching) of nearby
geodesics, it can be studied by means of a scalar version of
Eq. (2), obtained by standard algebraic manipulations,
describing the evolution of the norm of the geodesic sep-
aration vector

1d21€1? ndq” ,dg° > || V€
53 T | Bovpo it PRl i€l — s

2
=0
2 ds? ’

(3)

where p? = £P/||€|| are the components of the unit vec-
tor codirectional with €. This equation is useful only if
we can rewrite it in closed form. To this purpose some
approximations must be introduced [3] and lead to

2(|£1]2 2
el - () —0 @

I
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where ¥ is proportional to the Ricci curvature of the man-
ifold.

In Sec. II we briefly recall some basic elements of
the description of Hamiltonian dynamics in the enlarged
configuration-space-time equipped with Eisenhart met-
ric.

In Sec. III we define a criterion to compute the tran-
sition between weak and strong chaos. This criterion is
applied to a chain of harmonic oscillators, as well as to
the Toda lattice, to show how integrable models appear
to be unambiguously characterizable. The same crite-
rion, applied to the Fermi-Pasta-Ulam model, allows an
analytic computation of the SST in the thermodynamic
limit.

Some conclusions are drawn in Sec. IV.

II. EISENHART METRIC
AND HAMILTONIAN DYNAMICS

As already pointed out in [3], there are several possi-
ble choices for the ambient manifold to rephrase Hamil-
tonian dynamics in geometrical terms: (i) configuration
space M equipped with Jacobi metric gs; (ii) configura-
tion space-time M X R with the structure of a Finsler
space induced by a suitable metric gp; (iii) enlarged
configuration-space-time M xR x R equipped with Eisen-
hart metric gg; and (iv) tangent bundle TM of configu-
ration space equipped with the Sasaki lift gs of gy and
suitable restrictions to TMpg. Among the others, the
Eisenhart metric has many advantages, as will become
clear in the following.

The Riemannian structure of M is a consequence of
Maupertuis least-action principle. In order to derive a
Riemannian structure from Hamilton least-action princi-
ple, after the Eisenhart theorem [13] we must consider the
enlarged configuration-space-time M x R? with local co-
ordinates ¢°,¢,...,¢%, ..., qN, ¢V, with (¢*,...,qV) €
M, ¢° € R is the time coordinate, and ¢Vt € R is given
by (3]

t
gV (t) = CP + Oy — / L(a, &) dt ; (5)
0
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C, and C; are arbitrary constants. For standard Hamil-
tonian functions H = T'+V (q), in this coordinate system
the metric tensor gg reads

—2V(q) 0 -+ 0 1
0 ai ainy 0
g = : Cootes b ) (6)
0 ani -+ ann O
1 o --- 0 o0

hence the arc length of the manifold is given by
dsy = a;jdg'dg’ — 2V (q)(dg®)® + 2dg°dg™* ,  (7)

where a;; is the kinetic-energy matrix. The inverse ggl
of the metric tensor, whose components are defined by

9" 9ve = 6:: s
takes the form
o 0 --- 0 1
0 b1 -+ bin 0
g = i : , (8)
0 byy -~ bvnw O
1 0 --- 0 2V(q)

where b;; = (a;;)7t.

An nice property of this metric is that of giving an
affine parametrization with time of the arc length; in fact
one readily finds

ds% = 2C%dt? | (9)

where C? is a real constant having the dimensions of an
energy.

In the following, without loss of generality, we shall
assume that the kinetic-energy matrix is diagonal, i.e.,
a;; = ;5. The only nonvanishing Christoffel coefficients
are (0; =0/9q*, i =1,...,N)

Thy =3V, i+t = _9,v ; (10)
hence the geodesic equations (1) become
dzqo
1e2 = 0, (11)
d2qt . dg® dg°
T i1, 2L (12)

ds?2 ' "% ds ds ’

d?gN it N+1 dq° dg’
T P G =0 (13)
and finally, using Eq. (9),
d2q0
¢9 _ 9
o, (19)
d%q ov
@z = "ag (15)
quN+1 dL
@ (16)

Equation (14) states that ¢° = ¢, the N equations (15)
are just Newton equations of motion, and Eq. (16) is the
differential version of the relation (5).

In Fig. 1, a pictorial representation is given of the
enlarged configuration-space-time.
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FIG. 1.
(M X Rz,gE).

Pictorial the manifold

representation of

A. The Jacobi-Levi-Civita equation
and the tangent dynamics

In comparison with Jacobi and Finsler metrics, the
use of the Eisenhart metric has a great advantage: the
simplicity in computing the relevant geometric quanti-
ties such as Riemann and Ricci tensors, etc. In particu-
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as geodesics of the Eisenhart metric, then by studying
their instability properties in the differential geometrical
framework we recover a familiar tool in the analysis of
the instability of the dynamics. In fact, the JLC equa-
tion (2) for the geodesic spread, for this metric, yields
the usual tangent dynamics equation (26).

The equivalence between the geometric formulation of
the instability problem and that in terms of the tangent
dynamics is a consequence of the curvature properties of
the manifold (M x R2,gg). These are described by the
Riemann tensor.

The nonvanishing components of the Riemann tensor
are easily found to be

ROin = B,BJV . (17)

Hence we find that the Ricci tensor R, = R, has only
one nonvanishing component

Ry = 88,V = AV (18)

and that the scalar curvature R = R, is everywhere van-
ishing:

lar, if the trajectories of a Hamiltonian system are seen R=0 (19)
J
The JLC equation, written in components, then becomes [3]
dq’
04 RO 0 RO i
ds als5 Hio; d 5 Fos; d 5 ds o (20)
iR dq i 0d R 0d
E;ES Ryjo s &+ Roo; ds f Joo § ) (21)
vV Vv dq* d
LSS N )
[
Now we take advantage of (9) to replace ds with dt in dz,f1 o’V
both ordinary and covariant derivatives; then from (10) dez Bq dqi &= (26)

we know that I'); = 0 so that

(23)

and, as g°° = 0 [Eq. (8)], all the mixed components of
the Riemann tensor having a contravariant index equal
to 0 vanish. Thus Eq. (20) becomes

d2€0
= 0 .
dt? ’ (24)
by choosing separation vectors such that £°(0) = £°(0) =

0, £°(t) = 0, the components 1,..., N of the covariant

derivative also reduce to ordinary time derivatives and
Eq. (21) reads

d2 £1.

@ (25)

Rf)jo 63 =0 )

that is,

which is the usual equation describing the tangent dy-
namics in the case of standard Hamiltonians.

We have here a very interesting result stemming from
the use of the Eisenhart metric: the evolution equation
for the vector field € of geodesic spread on the manifold
(M x R?, gg) reduces to the tangent dynamics equation
in configuration space. The two additional equations
are trivial; in fact, that concerning £¢° has the solution
£9(t) = 0, and Eq. (22) shows that £¥+! has only a
passive evolution. In addition £€V*! does not influence
the evolution of the other components and so it cannot
contribute to any possible instability of the geodesics.

This result can be used to justify on different grounds
the standard numerical algorithm [14] to compute Lya-
punov exponents through a local averaging of the rate of
exponential divergence of nearby trajectories. After hav-
ing realized the geometrical origin of Eq. (26), the stan-
dard computational scheme turns out to be well defined
on the basis of JLC equation with Eisenhart metric: there
is no need for the Oselede¢ theorem because numerical
Lyapunov exponents are not true Lyapunov exponents

(3]-
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B. Instability of the geodesics of (M x R2, gg)

The differential geometrical origin of Eq. (26) has an-
other relevant consequence: it makes possible working
out a scalar evolution equation for the norm of the sepa-
ration vector obeying the equation for tangent dynamics.
Such an equation is already given in [3] independently of
the metric adopted, so it is straightforward to specialize
it for the Eisenhart metric. It is worth noticing that such
a derivation would be impossible starting just from the
tangent dynamics equation. In fact, there is no natural
criterion to derive from the vector equation (26) a scalar
equation for the norm of &.

The approximate evolution equation for the average
norm ¢ of the vector field & of geodesic separation reads

(3]

d? 1 /d¢\?
7 T2x(9) '2g(ds) =0, (27)
where ( is the norm of £ after averaging over the possible
directions of £ at point P with an uniform distribution;
x(8) is the Ricci curvature per degree of freedom
1 1 dg* dg¥
x(s) = YV_KR(S) a NRW ds ds

In principle there is also another possibility of approxi-
mating the complete JLC equation. In fact, at any given
point P, in addition to the average over the possible di-
rections of &, one could also average over the possible
directions of the velocity vector of all the geodesics is-
suing from P. This would lead to x(s) = R/N?, where
R is the scalar curvature at P. However, in the case of
the Eisenhart metric it is found, Eq. (19), that R = 0
identically.

By substituting in (28) the only nonvanishing compo-
nent Rgo of Ricci tensor in (18), we obtain

(28)

1 1 dg®\?
FEr) = pov () (29)

and since Eq. (9) means that dg°/ds is a constant, Eq.
(27) is now

d2¢ 1 [(d¢\?
Fra 2kr(t)¢ — 2¢ (a) =0, (30)
where
kr(t) = % AVge - (31)

The norm ( is real and positive; thus we can put
(1) = ¥2(2) (32)

so that Eq. (30) is cast in the form of a generalized Hill
equation

d%y
Et?+kR(t)¢=0 . (33)

The scalar equation (33) is perhaps the most concise non-
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trivial description of the stability properties of dynamical
motions of a standard Hamiltonian flow.

As already discussed in the Introduction, chaos is
the result of the combined presence of instability of
the geodesics and compactness of the ambient mani-
fold. Apparently some problem could arise in the case
of (M x R?, gg) because it is not compact. However, let
us remember that natural motions are the projections on
configuration space of the geodesics of (M x R?,gg). In
particular, the projections live in a compact subset of
configuration space for most of the potentials of physical
interest. Moreover, if the geodesics of (M x R2?, gg) are
unstable, their projections will also be unstable, and thus
natural motions in configuration space will be chaotic.

There are two possible ways of obtaining unstable so-
lutions of Eq. (33), i.e., such that

’l/) ~ eAt — C ~ eZ/\f. ,
and hence chaos: kg(t) must be negative somewhere
along a geodesic (loosely speaking, a positive measure
of such regions of negative curvature is needed) or kr(t),
being positive, must fluctuate in a suitable fashion in or-
der to induce parametric instability.

There are potentials for which kg > 0 always holds
true [for instance, this is the case of the Fermi-Pasta-
Ulam (FPU) model, lattice ¢* model, etc.]. For others,
such as the Lennard-Jones or the Morse potential, if the
particle motions are essentially confined inside the bind-
ing region (where potential energy is smaller than disso-
ciation energy) and below the inflection point of the po-
tential, then we have again kg > 0. This can be mainly
the case of solid state systems.

When Ricci curvature is always positive, or it is posi-
tive for the overwhelming majority of points along a given
trajectory, the only, or dominant, mechanism to make
chaos is parametric resonance. The use of the Eisen-
hart metric provides a clear confirmation of the already
emerged [3] relevance of this mechanism for Hamiltonian
chaos.

As it is the bumpiness of the ambient manifold, rather
than negative curvature, that is the dominant source of
chaos, we will focus our attention on the global degree
of bumpiness of (M x R2,gg), i.e., on the mean Ricci
curvature integrated over the whole manifold with the
constraint of constant energy.

In Fig. 2 we report two numerical solutions of Hill’s
equation (33), for the FPU model, showing an exponen-
tial growth with time of the average norm of the sepa-
ration vector. At higher energy instability is stronger.
A systematic analysis of the € dependence of the insta-
bility exponent obtained by solving Hill’s equation (33)
together with the dynamics will be given elsewhere.

III. A CRITERION TO COMPUTE
THE TRANSITION FROM WEAK
TO STRONG CHAOS

In the preceding section we have used simple elements
of a geometric language to tackle Hamiltonian chaos in
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FIG. 2. Numerical solutions ((t) = ¥?(t) of Hill’s equation

(33) for the FPU model at N = 128 and € = 0.6 < &, (bottom
curve) and € = 6 > e. (top curve).

an alternative way, independently of homoclinic intersec-
tions. The geometric approach is definitely more natural
because it makes use of natural coordinates instead of
action-angle ones, it applies at any energy instead of be-
ing valid only in the quasi-integrable limit, and the deep
origin of Hamiltonian chaos now becomes intuitively ev-
ident simply by studying the first and second variations
of the action functional. The geometric approach has
another nice property: it unifies the explanation of the
origin of chaos and the way to measure its strength.

Now we want to show how powerful the geometric ap-
proach is by addressing a physically relevant problem al-
ready mentioned in the Introduction: the fate of the SST
in the thermodynamic limit. A similar problem has been
debated ever since the pioneering works that followed the
FPU numerical experiment [15]. Before the present pa-
per, no reliable argument has been put forward because
of several reasons: only recently the SST has been discov-
ered; beforehand a lot of confusion existed about what
kind of transitional behavior is characteristic of many-
dimensional Hamiltonian flows. The SST is in a privi-
leged position because it is independent of the choice of
initial conditions; thus it concerns a major global change
of the structure of phase space that can be revealed by in-
trinsic properties of the dynamics with generic (random)
initial conditions [1,2]. At variance, by adopting nonequi-
librium initial conditions one gets only local information
about the structure of phase space, and the complete ar-
bitrariness in choosing such initial conditions makes it
difficult to get a hold of any global transitional property.
Moreover, until now the few attempts to find out the
thermodynamic limit behavior of any transitional prop-
erty of high-dimensional Hamiltonian flows were based
on numerical scaling laws extrapolated at N — oo; such
a procedure, being the only possible one with numerical
simulations, is evidently rather dangerous.

In what follows, in order to work out analytically the
specific energy (E/N) domains of weak and strong chaos,
we adopt an effective criterion, already proposed in Ref.
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[3], which is here applied to the manifold (M x R2, gg).
The use of the Eisenhart metric now makes it easier to
compute analytically the SST in the N — oo limit.

The criterion is based on the observation that the av-
erage Ricci curvature of the ambient manifold, computed
with the constraint of constant energy, is independent of
energy density for integrable systems, both linear and
nonlinear (i.e., a collection of harmonic oscillators and
the Toda lattice). Hence the ansatz proposed in [3] fol-
lows: if the average Ricci curvature of the ambient man-
ifold is constant with respect to energy density, then we
are dealing with an integrable system; if the average Ricci
curvature is nearly constant, that is, only weakly increas-
ing with energy, then the system is in its weakly chaotic
regime; finally, if the average Ricci curvature is quickly
increasing with energy density, then the system is in its
strongly chaotic regime. Since the transition is rather
smooth, we conventionally define the energy threshold as
the crossing value of the two asymptotes of the average
Ricci curvature. This is a sensible criterion because it is
in very good agreement with the crossover in the scaling
of the largest Lyapunov exponent.

In other words, the bumpiness of the ambient manifold
is responsible for the emergence of parametric instability,
thus of chaos, and the rate of change with energy of the
average bumpiness gives synthetic information about the
degree of chaoticity of the dynamics. In Fig. 3 a pictorial
representation is given of what is meant here.

A. Global geometric quantities

Let us now cope with the problem of computing the av-
erage value of any geometric quantity f(q) on the whole
manifold with the constraint £ = const, i.e. on the
constant-energy surface X g with uniform measure. One
has to compute

Jz, doE f
(fa)sgx = L—d"E
1
~ o. [ f@étH@p) - Fydadp,  (34)
where

(MxR?, gg)

FIG. 3. Pictorial representation of the geometric change of
the ambient manifold at increasing energy density €.
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Let us first compute Q. By using

1 +oo .
o(z) = > / e " da

— E)dqdp . (35)

and setting n = i we get

~oomi )

1 +o0 +oo N
Qp d’? enE/ quldp e~ "H(ap)
Now, consider standard Hamiltonians
1 Y
— = 2 .
H(a,p) = Zm +V(a) ; (36)

for these the integration over the p; is trivial, and

aN/2  ptoo N 5 +o0 N v

—oo =1

Here the multiple integral over the g¢; is formally coinci-
dent with the configurational integral Z¢c(n) of statistical
mechanics with the Gibbsian canonical measure, though
in this case 7 is just a parameter and has nothing to do
with temperature. So we can write

ﬂ,N/z +oo
Qp = o / dnn
T J_oo

N/2 oo
=2 / dnexp[nE—%lnanZc(n)]-

27 oo

—N/Ze'qE'ZC(n)

This integral can be evaluated in the limit N — oo by
the saddle-point method; in fact, for N > 1, both E
and ln Z¢c are O(N) quantities. Denoting with w(n) the
integrand, we have

QE = w(ﬁ) )

where 7 is the parameter value defined by the stationarity
condition

thus giving the relation between E and 7

N 15)
E :Z J— O .
2n 877 (o Ze ()]

In terms of the specific quantity ¢ = E/N, which is the
relevant one in the limit N — oo, we have

e(n) == — Non (ln Zc(n)] - (37)

Finally we obtain Qg(e) in parametric form as
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Qe(n) = CpZc(n)

PO e = L lmze,
€ = —— ——[n
" 2n N On ¢
where C,, is inessential to compute the averages.
Let us now come to the computation of the average of
f(dq). With the same reasoning just used for Qg, we can
write

Cy Zc(n)
Qp(m)

is the Gibbsian average of f

(f(@))ss = (H@ =(H@) ,

where (f)¢
(F)C = Zem) / da f(q)e V@ . (39)

In conclusion, if one knows the canonical average (39) of
f, one can also write the parametric equations for the
average over Lg (34)

(Nes(m) = (H0)

(F)ze(©) (40)
e) = 5= 3 e I Zen)]

which is formally also the microcanonical average of f.

B. Integrable systems

As already mentioned, in Ref. [3] it has been shown
that the average Ricci curvature, computed for (M, gs)
with the constraint (q,p) € Xg, is independent of € for
two integrable systems: a chain of harmonic oscillators
and the Toda lattice. This result has been obtained by
Monte Carlo computations on X g and by time averages
along dynamical trajectories at NV = 128 degrees of free-
dom.

Let us now check this result in the limit of arbitrar-

ily large N and by using the Eisenhart metric. To this
purpose remember that kg = AV(q)/N, so that
(kn(@)zs = o= [ dopxAV(@) (41)
= — o — .
R\4))Zg QE - E N q

As linear integrable systems we consider a collection of
N harmonic oscillators described by the Hamiltonians

N
1, 1 2
=S" 22+ S (gisr — @)%, 42
H(p,q) 21 oPi+ 5 (91— ) (42a)
1

Hp.a) = 3 5ot + ot (420)
We immediately find kg(e) = 2 and kg(c) = Y, w?/N,

respectively; hence
(kr)sgz(e) =2, (43a)

N2

(kr)np(e) = Z -% = const. (43b)
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If the frequencies w; in (42b) are given by w; =
2sin(mi/N), then the g; are the normal mode coordinates
that diagonalize the Hamiltonian (42a). In this case the
constant in Eq. (43b) is again 2.

Notice that in the generalized Hill equation (33) we
have kg(t) = const for both systems; thus only periodic
bounded oscillations of the norm of geodesic separation
vector are possible, and this is true for any initial condi-
tion and at any energy.

As a nonlinear integrable system we consider the Toda
lattice described by a standard Hamiltonian (36) with
the potential function given by

N
Vig) = [em @79 4 (g4 —qi) — 1] 5 (44)

i=1
in this case the Ricci curvature reads

9 N
kr = N Ze_(‘Ii+l"¢Ii) , (45)

=1
and as shown in Appendix A we get

(kr)zjz(e) =2 (46)

also for the Toda lattice. Here kg(t) entering Eq. (33)
is no longer a constant along a trajectory. Nevertheless,
things self-adjust so as to avoid parametric instability, as
is shown in Fig. 4.

In conclusion, a sufficient mark of integrability, and so
of regular dynamics, appears to be (kr)s,(¢) = const.

C. Computation of the SST in the FPU 8 model

Let us now consider a nonlinear nonintegrable system:
the FPU (8 model described by the Hamiltonian

L

| Il,LLLUl 1 1L II|

11 Illllll 11 !Hllll

coaa e b e g by
0 500 1000 1500 2000

t

FIG. 4. Numerical solution ¢(t) = ¥?(¢) of Hill’s equation
(33) for the Toda lattice at N = 128 and € = 0.5.
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N N
H=3 22+ |2 (g —0)® + & (@i —00)*| -
- : 2p1, . 2 i+1 ) 4 i+1 )

(47)
For this model, the geometric approach, based on the
Eisenhart metric, makes possible the analytic study of
the SST in the thermodynamic limit. The results so ob-
tained are in excellent agreement with those reported in
[3] at finite NV and for (M, gs). In particular, the study
of the curvature properties of (M x R?, gg) clearly shows
the persistence of the transition between weak and strong
chaos in the limit N — oo.
Again we have to compute the average Ricci curvature
as a function of €. To this purpose we use Egs. (40) and

(41). The explicit expression of the mean Ricci curvature
kg for the FPU 8 model (47) is

—24 Z Gi+1 — . (48)

Notice that for this model kR is always positive, so that
parametric instability is the only mechanism to make
chaos, at least when the problem is treated with the aid
of the Eisenhart metric and of the approximate equation
(27).

In order to compute the Gibbsian average of kg , which
is needed to apply Eq. (40), we slightly modify the canon-
ical partition function Z¢ as follows:

400 N ~
I1 da: exp[-nV (a)] (49)

T =1

Zc(a) =
with
N
; [ (gi+1— 9:)° + g(QH»l - (Ii)4:| .

Equation (49) can be expressed in terms of Z¢ and of
the arbitrary parameter o as Zc(a) = Zc(an,p/a) ,
and hence we can write

k) = 2= 2 | Zel@)] . @0)

The problem of computing (kg) is now reduced to that
of working out

ﬁlz-c_ [%Zc(a)] = % [%hlzc(a)]a:l . (51)

a=1

From the expression (49) for the partition function of the
FPU 8 model, we can write

[Zo(@)" f(a) , (52)

where f(a) is a quantity ~ O(1) and Zc(e) is the single-
particle partition function [16]

50(a) =T (%) ("7“)_1/4 exp (%aﬂe?) D_y/5(af) ,

(53)

Zc(a) =

T is the Euler’s function, D_
function, and

1/2 is a parabolic cylinder
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o= (%)1/2 . (54)

Therefore we can write

18, 5 o . . 1
NEEIHZC(O‘) = E)Elnzc(a) +0 (ﬁ)

Thus in the thermodynamic limit Eq. (51) becomes

¥ lpatnZe@] = |gtmic@| . )

By using standard properties of the parabolic cylinder
functions, Eq. (55) reads

o . . 6 D_3/2(0)
[% lnzc(a)] w1 2 D—1j2(9) ’ (56)

and going back to Eq. (50) through (56), (55), and (51)
(kr) is found as a function of the parameter 6

(k) (0) = 2 + > D=or2®)

0 D_y/5(0) 57)

According to the (40), (kg), averaged on X, is given
in parametric form by (57) together with the implicit
expression (37): € = &(n).

Having in mind Eqs. (53) and (52), we find

1 D—3/2(9)] 7

10 101 1
62 " 0 D_,,5(6)

I | = —
Nann ¢ 8u

and the final expression relating 6 and ¢ is

5(9):i[§3§+1M]

8u 0 D—1/2(9) (58)

Finally, the average Ricci curvature of (M xR2, gg), com-
puted on ¥ g, is

a6
(kr)(6) = 2+gig_l;2§0§
(kr)(€) LT3 1Doaa(®) (59)
_ |2 L =827
«0) = 8u [92 "o D~1/z(9)] '

In Fig. 5(b) (kgr)(¢) is plotted for the case p = 0.1,
which has been chosen to make the comparison easier
with previous results on the SST, obtained by numerical
simulations [1,2]; in Fig. 5(a) the values of A{(¢) which
clearly show the crossover defining the SST are reported.
Time averages kg

Bn =+ [ kala(0) d

have also been computed along numerical trajectories ob-
tained at different values of € and for N = 128,512. The
comparison among analytic and numeric results is made
in Fig. 5(b). The agreement is strikingly good. It is
worth noticing that already at N = 128, at least as far

as these geometric properties are concerned, we have a
very good indication about some asymptotic properties
of the system.

These results indirectly confirm the correctness of sim-
ilar ones already found in Ref. [3] by means of numeri-
cal simulations performed using Jacobi metric. The neat
change of the € dependence of (kgr) is well evident in Figs.
5(b) and 6. Moreover, the analytic result allows affirming
safely that this effect is persistent in the thermodynamic
limit N — oo.

The interpretation of the transition between weak and
strong chaos (SST) (an effect due to the change of global

0 . :
10 gmr T IHIIH{ TTTITm T II'IJ.IIH} TTT IlIII{"‘_!,.l I Ill%i
- (a -6 ]
(a) S 0P
101 E R Mol a
— 1072
< 2 , E
C g ]
103 s 3
= 3
r o 7
1074 & -
IH| | 1-‘IIHII| | Illlllll | IHIIH{ | Illlllll L LI
10-2 10! 100 10! 102 103
€
JHII T Hllllll TTTIm T T T orrrmmy T HH\'[
~ (b) ]
A 1
N 10
i
Vv
100 IHII | IIIIIH' | I!IIIHI || IHIH’ 1 JIIIIII! IR
10-2 101 100 101 102 103
€
FIG. 5. Evidence of the SST in the FPU B model.

(a) Largest Lyapunov exponent A; (circles) computed by
means of numerical simulation of the tangent dynamics with
N = 128 and g = 0.1 (from Refs. [1,2]); dotted lines are refer-
ences to power laws €2 and £2/2, and their intersection defines
the SST. (b) Average Ricci curvature per degree of freedom
(kr)s computed with 4 = 0.1. The continuous curve is
the analytic result (kr)s,(€) (59); open circles and triangles
are time averages kg obtained by numerical simulation of the
dynamics with N = 128 (circles) and N = 512 (triangles).
Dotted and dashed lines are the asymptotic behaviors which
are used to define the SST (see text and Fig. 7).
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geometric properties of the Riemann manifolds underly-
ing the trajectories of the system) is strengthened here.

Computation of the critical energy density of the SST

From the result of Eq. (59) one can derive an ana-
lytic expression for the critical energy density e. of the
SST. This transition is smooth, i.e., neither the function
(kr)(€) nor its derivatives has any discontinuity. Never-
theless, (kg)(e) shows two very different asymptotic be-
haviors at € = 0 and € — oo; the first limit corresponds
to the harmonic limit of the system

(kr)(€) = (kr)o =2 . (60)

The tabulation of (kgr)(e) shows that its high-energy be-
|

e—0 E
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havior scales as €!/2, but we can find an analytic ap-
proximation for this limit. As € — oo = 6 — 0, one
can expand the functions D, in Eq. (59) up to the first
order in 6 near § = 0, getting D_;/5(0) ~ D_1,2(0) +
D' ,,,(0)8 = D_y/5(0) — 3D_3/5(0)0 and D_35(6) ~
D_3,2(0) + D'_3/2(0)0 = D_3/2(0) — D_;/2(0)0. Then
retaining again only the first-order terms in 6

D_3/,(0) N D_3/2(0) — D_,,2(0)8
D_y/3(0)  D_y/5(0) — $D_3,2(0)8
D_3/5(0) D33/2(0) - 2D2—1/2(0)
D_,»(0) 207 ,(0)
Let us denote by (kr)(¢) — (kr)oo(¢) the asymptotic

behavior in the limit ¢ — oo.
The parametric expression for (kr)oo(€) is

D?,,(0)—-2D% (0 D 0
(kr)e(8) = 2+ —3/2( )2 _1/2( ) 3 —3/2(0)
2D_1/2(0) 0 D_1/2(0)
(kn)oo e) 2 2 (61)
€ (0) . __1_ i + l D-—3/2(0) D—3/2(0) - 2D_1/2(O)
< 8u |62 0 D_y/5(0) 2D?, ,(0)
[
In Fig. 7 the two asymptotic behaviors are shown. The Substituting the numerical values [17]
intersection point between the two asymptotes can be
used as an operational definition of the threshold energy e ~ 0.121 ) (63)
€e. w

Let us now define €. through the condition

(kr)o = (kRr)oo(ec) »

and, by eliminating 6, from (61) we get the formula

_ _3“[D2-3/2(0)_2D2_1/2(0)]2
T 32

(62)

C

D31/2(0)D2‘3/2(0)

102

101

<kR>

loo_LumuLLLumLmuuLumuLumﬂ_uuuuLu_mmLimuu
1073102 101 100 10! 102 103 104 105

€

FIG. 6. Behavior of the Ricci curvature (59) for the FPU 3
model with different values of the nonlinear coupling constant

.

For 4 = 0.1 it is e, ~ 1.21, which is in very good
agreement with the recent numerical values determined
through the crossover in the scaling behavior A;(g) of the
largest Lyapunov exponent [1,2] or by geometric methods
with Jacobi metric in [3].

(T Illlllll IIIHTTI" UL ALY AL

101

<kR>

100 J.U.LI IIIHIIII llllllll[ IIIIIIIII ItlllJlll LIt
10-2 10! 100 101 102 103

€

FIG. 7. Asymptotic behaviors of (kr)s, for the FPU g3
model with g = 0.1. The continuous curve is the full result
(59), the dotted line is the harmonic limit (60), and the dashed
line is the high-energy limit (61). The intersection of these
two curves defines e..
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Equation (62) gives &, as a function of the nonlinear
coupling constant u, and so we get a “critical line,” in the
parameter plane (e, p) of the FPU 8 model, separating
the regions of weak and strong chaos; this is shown in
Fig. 8.

IV. CONCLUSIONS

The present paper is a followup of a previous one where
it has been shown that a Riemannian approach to the
quantitative description of Hamiltonian chaos is power-
ful from both the conceptual and computational point of
view. Here we have mainly investigated the potentialities
of the Eisenhart metric on the enlarged configuration-
space-time (M x RZ%, gg).

Here we have found a confirmation of the fact that
weak and strong chaoticity regimes, as well as the transi-
tion between them, are clearly marked by the energy de-
pendence of a global geometric quantity—the mean Ricci
curvature averaged over the whole manifold with the con-
straint of constant energy—moreover that the energy in-
dependence of the same quantity constitutes a sufficient
and clear-cut method of recognizing integrable systems

[3]-

While confirming the power and the interest of the
differential-geometrical description of Hamiltonian chaos,
the present paper provides relevant results that can be
summarized as follows: (i) the dominant source of chaos,
in those systems whose particles interact through a con-
fining potential, is parametric resonance due to fluctu-
ations of positive Ricci curvature; (ii) the energy de-
pendence of the mentioned geometric quantity can be
computed with the same degree of difficulty of stan-
dard statistical-mechanical calculations and for both the
FPU 8 model and the Toda lattice (in one dimension)
we have worked out ezact analytic computations in the
N — oo limit; (iii) we have given a proof of the stabil-
ity of the strong stochasticity threshold in the thermo-
dynamic limit; and (iv) we have provided a criterion to

IIIHII’ ﬁllﬂll, T lIIlIIII T III!IIII T IHIIIII E|

C 1

102 & =

= strong chaos E

10! & 3

w C ]

100 =

: -

- )

10_1 = weak chaos =5

1072 =
:Illllmi 1 I|IHII| 1111

10-3 1072 101! 100 101
“

FIG. 8. Parameter plane (e, p) for the FPU 8 model with
the “critical line” for the SST defined by Eq. (62).

compute the transition energy e. of the SST. This cri-
terion can be applied to the FPU model leading to an
analytic formula for ¢, in the thermodynamic limit, the
numeric value thus obtained is in excellent agreement
with its previous determination through the crossover in
the e scaling of the largest Lyapunov exponent.
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APPENDIX A: COMPUTATION OF (kgr)s,
FOR THE TODA LATTICE

The computation of (kg)s, with the potential function
of the one-dimensional Toda lattice (44) can be carried
on, as already done for the FPU model. The Ricci cur-
vature per degree of freedom is given by [Eq. (45)]

2N
—_ 2 —(gi+1—4i)
kR_N;e Gi+1—@)

and with the saddle-point method, as in Eq. (40), its
average is

2 0 ~
k = ———[InZ¢(a)]a=1
) () (kr)(n) Nu g n Zo(@)] (A1)
e =¢(n),
where
~ too NV ~
Zo@) = [ ]I daexp[-nV(a)] (A2)
and
f/(q) = Z [ae"(""“”q") +(gi+1 — @) — 1] (A3)
Moreover, for N — oo
Zo(a) = [Fo(@)]” (A4)
with
+oco
zZo(a) = [ dz exp (—nae™® — nz + 1)
=T'(n)(na)™"e7, (A5)

and by substituting Eqs. (A4) and (A5) into the first
equation of (A1) we finally obtain

_ 2 0 . 2 n _
(kr)ln) = = S 5o Inoe)| =-> [-2] =2

and thus

(kr)szs(€) = (kr)(n)

[
N

>

3
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APPENDIX B: NUMERICAL COMPUTATIONS

A very efficient and precise symplectic algorithm has
been proposed recently [18]. This integrator alternates
two different choices of the function generating the canon-
ical transformation that maps coordinates and momenta
from any time ¢ to a subsequent time ¢t + At. For this
reason the algorithm is called “bilateral.”

Let us recall that the well-known leap-frog scheme
which, for Hamiltonians such as H(q,p) = Efil pi/2 +
V(q), reads

q,—(t -+ At) = qi(t) -+ Atpi(t) s

O y(a(t+ap),

pi(t + At) = p;i(t) — At e

(B1)

is a canonical transformation of variables generated by
the function

F(Q,p,At) = -Q-p+ AtH(Q,p) (B2)

(lowercase letters p and q refer to time ¢, while capital
letters refer to the same variables at time ¢ + At).

At infinitesimal At¢, the function (B2) becomes exactly
the generating function of the natural motion of the sys-
tem in phase space [19]. There is some arbitrariness in
the choice of (B2) to construct the numerical integration
scheme. In fact, a function ® obtained from (B2) by in-
terchanging the role played by the coordinates with that
of their conjugated momenta,

®(q,P,At) =q-P+ AtH(q,P), (B3)

has the same meaning of F' for a vanishing At; the trans-
formation generated by (B3) is in fact an alternative form
for the leap-frog algorithm.

The difference between these two limits shows up only
at finite At, and so it has practical consequences only
when these canonical transformations are used in the
form of numerical integration algorithms. Hence the sim-
ple idea of compensating the errors of each partial scheme

by alternating them in a bilateral algorithm results [18].

Moreover, by applying this idea to the general scheme
to generate higher-order symplectic algorithms reported
in Ref. [20], a second-order bilateral algorithm is worked
out [18] in the following form:

g = q(t) ,
1 0o
~i: o —-At—~V q 3
pi =pilt) — 5 % (@
qi(t + At) = ¢; + At ps
1 15)
- = p; — ~At=V(q(t + At)) ,
plt+ A1) = i = 382V (ale + A1)

pi = pi(t + At)

¢ = qi(t + At) + %Atﬁi )
o
04;
gi(t +2A8) = §; + %Atpi(t + 2At).

pi(t + 2At) = p; — At~V (Q) ,

(B4)

The numerical integrations of both the FPU and the
Toda lattice models have been performed with At = 0.01
at low and intermediate energy; at high energy At is
scaled with energy so as to keep the energy fluctua-
tions at the same order of magnitude. With this choice
of At and with (B4), relative energy fluctuations are
AE/E ~107".

All the simulations have been performed using words of
64 bits. We have always chosen random initial conditions
at equipartition among momenta.

The convergence of the time averages of Ricci curva-
ture, computed for the FPU model, is fast, so very precise
values are easily obtained. We used NV = 128,512.

For both models, a parallel integration has been made
of the dynamics together with Hill’'s equation (33).
The latter has been integrated with the simple central-
difference scheme. In these cases At has been chosen
smaller, At = 0.001, in order to avoid numerical errors
in detecting parametric instability.
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